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numeraire consumption. Nevertheless, unless electricity production is heavily tilted
towards coal, EV credits are benefit-neutral under a social cost of CO2 between $190
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1 Introduction

The last decade has given rise to the electric-powered vehicle (EV). One of the promises of

EVs is reduced greenhouse gas emissions: pairing widespread adoption with a greening of the

electricity production mix can result in substantial direct emissions reductions. However, by

reducing per-mile commuting costs, EVs are likely to cause urban sprawl, with associated

increases to commute length, dwelling size and reductions to dwelling energy efficiency.

Purchase tax credits have been a popular way for policymakers to incentivize the widespread

adoption of EVs, with the recent Inflation Reduction Act offering $7,500 per vehicle. Two

questions motivate this paper. First, what are the effects of EV tax credits on the long-run

urban form of the city, and second, do EV tax credits reduce overall emissions, and if so, by

how much?

These questions are difficult to answer with existing data and modeling approaches for

several reasons. First, short-run demand elasticities of new technology types may be lower

than long-run elasticities, making it difficult to predict the long run effects of such a policy

using early data. Second, general equilibrium effects at the city level are essential to con-

sider. While direct emissions reductions are easily quantifiable holding commuting patterns

constant, standard models of urban systems suggest the location, sizes, and types of housing

in a city adapt to changes in commuting costs. Thus a change in commuting costs is likely

face both a direct rebound effect of longer commutes, and a secondary effect of changing

residential energy demand. Finally, there may be interactions with existing residential land

use regulations, with policies such as minimum lot zoning, height limits, and greenbelts inter-

acting to give larger or smaller effects on emissions relative to a laissez-faire (no regulation)

city.

To answer these questions, we build on the classic monocentric city model of Alonso

(1964), Mills (1967), Muth (1969), and the urban energy footprint model of Larson et al.

(2012) and Larson and Yezer (2015), in two ways. First, we endogenize the automobile fuel

choice, with households electing to purchase either an electric or gasoline-powered vehicle

with technology-specific fixed and marginal commuting costs. Second, we endogenize resi-

dential energy consumption, treating it as part of a household’s total housing costs. This

model is numerically solved (“simulated”) and calibrated to real-world data from a composite

medium-sized U.S. city, giving a baseline city with reasonable price, density, and emissions

gradients.

Given this calibrated urban model, we then perform a variety of counterfactual experi-

ments and compare model solutions. For example, to implement a change in EV purchase
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tax credits, we solve the model twice, once under a tax credit of zero and once under a pos-

itive tax credit. The difference between model solutions gives the model-generated effects

of the tax credit in the short-run, holding the urban form of the city and all other param-

eters fixed, and then in long-run general equilibrium as housing producers and consumers

are able to optimize with respect to the location and intensity of housing production. From

the outset, we caution against interpreting these predictions as forecasted effects; after all,

this is a calibrated theoretical model and not a forecasting exercise. Nevertheless, our model

offers a number of novel and important qualitative findings regarding long-run EV adoption

in response to purchase tax credits.

In the long-run, identical households choose EVs in more suburban locations because EVs

have lower marginal commuting costs. Accordingly, the introduction of EVs causes sprawl,

and EV tax credits encourage such sprawl. This rotation of the price gradient makes housing

more affordable by increasing effective land supply. Savings from EVs are reallocated to other

housing and non-housing consumption, and this consumption embodies energy consumption

and carbon emissions. This reduces the total energy reduction effect of EV adoption and

demonstrates the need to model EV tax credit effects in local general equilibrium. Because

EVs are adopted in more suburban locations, they effectively remove gasoline-powered cars

that are driven the most. So, while EVs cause sprawl in the model, they still substantially

reduce energy consumption because they take the most highly utilized gasoline vehicles off

the road.

We also offer findings of differential effects across cities of identical size depending on

climate, land use regulation, and tax regime. The model predicts cities in moderate climates

to sprawl more because home energy needs are lower. Accordingly, effectiveness of EVs in

such climates are therefore higher. Cost-effectiveness of EV credits are tied to the CO2

intensity of the electricity mix. When electricity is produced with dirty (e.g. coal) inputs, it

harms the cost-effectiveness of EV subsidies because fuel source substitution from gasoline

to electricity reduces CO2 emissions by less. Land use regulations interact with the effects

of EVs; in cities with density-reducing policies, EVs are more important for reducing energy

consumption and emissions, but will cause even greater sprawl. Finally, some tax policies

interact with the effects of EVs. Among those considered, only taxes that affect differential

marginal commuting costs have interactive effects. Of particular note is that carbon tax and

EV subsidies are duplicative: a carbon tax incentivizes EV adoption such that additional

tax credits are very expensive relative to their marginal effect on EV adoption and CO2

reductions.
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This research contributes to several important literatures. The first is the extensive lit-

erature on how transportation innovations, land use regulations, and interactions between

them affect the internal spatial structure of cities. Along this line of inquiry are contribu-

tions such as Larson and Zhao (2017) and Delventhal et al. (2022) who examine the effects

of widespread telework on the city, Bertaud and Brueckner (2005) who study the effects

of building height restrictions, Borck and Brueckner (2018) who examine energy taxation

regimes, and Agrawal and Zhao (2023) who investigate the effects of ride-sharing services, to

name several. This paper also has implications for the more quantitative equilibrium mod-

els introduced in the seminal work of Ahlfeldt et al. (2015). This important model relaxes

some of the assumptions in the classic Alonso-Mills-Muth model to more accurately model

microgeographies present in cities. Endogenizing automobile fuel choice and layering energy

demand onto this model would surely be a fruitful endeavor.

Another is the burgeoning research on electric vehicles, consumer choice, and commuting

behavior. EVs in their current form are relatively new, and researchers have undertaken

much work attempting to understand the pace of innovation, who currently purchases EVs,

and how to increase availability to a larger share of the population. Egbue and Long (2012),

Rezvani et al. (2015), and Archsmith et al. (2022) provide comprehensive overviews of the

basic economics of EVs and important barriers to widespread adoption. Our model attempts

to synthesize both short-run and long-run factors incentivizing EV purchase, including ve-

hicle costs for both new and used models, maintenance and fuel costs, range limitations,

altruistic climate beliefs, charging infrastructure, and policies meant to support adoption.

The remainder of the paper is as follows. In Section 2, we provide some institutional

background and stylized facts on energy consumption and policies that seek to reduce emis-

sions in the transportation sector. Section 3 introduces our urban model with endogenous

vehicle fuel choice and residential energy demand. Section 4 proceeds through a number of

model solutions corresponding to various settings. Section 5 concludes.

2 Background

To frame the model presented in this paper, we first discuss several facts in the data concern-

ing EVs before moving on to an overview of government policies designed to encourage their

purchase by households. The overall theme is that EVs are a nascent technology, and this

presents a serious modeling challenge both in terms of understanding household behavior in

laissez faire and in response to purchase tax credits.
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2.1 Stylized Facts

While EVs show great promise in achieving widespread adoption, they face many technolog-

ical, infrastructure, and design limitations. This has, so far, limited their attractiveness to

a small segment of the vehicle market, with an EV market share of all light-duty vehicles of

1.4% in 2019 rising to 3.1% in 2021. Combined, hybrid, electric, and plug in hybrid vehicles

surpassed 10% in 2021. For the purposes of this paper, we focus on the plug-in electric

vehicle segment (PEV), while recognizing that plug-in hybrids and electric vehicles share

many features including charging stations and a reliance on battery technology.

One survey by the AP-NORC Center for Public Affairs Research (2023) offers some

insights driving this market share and where it may be headed, while highlighting some

specific obstacles to widespread EV adoption; they could be summarized concisely as costs,

infrastructure, and politics.

Despite the 3% market share, 41% of respondents say they are “somewhat likely” to pur-

chase an EV for their next car. Yet, substantial hesitation exists for many respondents. For

example, 3/4ths of respondents worry about charging their vehicle, as charging infrastructure

is not standard in most locations, and current charging technology is slow compared to filling

up a gasoline tank at a gas station. There is low vehicle variety available until recently, with

mid-sized sedans being the only type of EV with wide availability. EVs are very expensive,

with most manufacturers targeting the luxury segment of the market. Stated willingness to

pay for an EV car falls when EV costs rise relative to gasoline vehicles, with 60% saying cost

is a major reason they have not purchased one so far and 25% saying it is a minor reason.

Climate altruism and virtue signalling may play important roles in EV adoption; 2/3rds of

respondents cite climate change as a major or minor reason for purchasing an EV. Finally,

there is a large partisan divide, with 54% of Republicans preferring gasoline vehicles, with

only 29% of Democrats sharing the same preference. The fact that the current market share

is 3% yet nearly half of all of those surveyed are likely to consider an EV purchase sometime

soon, current EV statistics may be difficult to generalize to the wider population and in the

long-run.

Despite these challenges with the data, there are two useful—but conflicting—facts we

would like to introduce here. The first fact in the data is that the EV market share declines

with distance from the center of the city, both unconditionally and conditional on socioe-

conomic characteristics and voting behavior (see Figure 1). The second fact is that electric

vehicles have higher fixed costs but lower marginal costs of ownership than gasoline-powered

vehicles, both unconditionally and conditional on vehicle make and model (see Table 1 and
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the Online Appendix). These facts are in apparent conflict because virtually all textbook

urban models predict that for identical households, the cheaper commuting method will be

chosen at each location in the city, ceteris paribus. Accordingly, the empirical EV market

share gradient should be upward sloping, not downward sloping were fuel technology choice

to be due exclusively to direct costs.

Fact 1: EV registrations decline with distance to the CBD

The first fact we would like to introduce relates to the EV registration gradient in large U.S.

cities. To our knowledge, this gradient has not been explored elsewhere in the literature.

Using data from atlasevhub.com, we downloaded and cleaned individual-level EV regis-

tration data from 12 states for the year 2022, and created aggregate totals for ZIP codes.

After filtering the data to keep only medium and large cities with little fixed-rail public

transportation, we are left with 9 cities 1 To normalized the data, we divided the total EV

registrations by the ZCTA-level population for 2019 5-year ACS. To focus on urbanized

regions in the selected cities, we drop all ZIP codes with ZCTA centroids further than 25

miles from the CBD. The resulting bin-scatter (see Chetty et al., 2014) of per-capita EV

registrations over the 763 ZIP codes in these 9 cities is shown in Figure 1, controlling for the

log of household income, the share of households with income greater than $200k, children
per household, log of population density, the Biden (vs. Trump) presidential vote share in

2020, and CBSA fixed effects. This figure shows a clear downward-sloping EV registration

gradient for households in otherwise observationally-identical ZIP codes.2

Fact 2: EVs are cheaper for longer commutes but not for shorter commutes

The second set of facts we wish to present involve costs of EV versus gasoline vehicle owner-

ship. Prior research has used information from the American Automobile Association (AAA)

and engineering studies for cost breakdowns (see West et al., 1999; Larson et al., 2012). Elec-

tric vehicles are rather new, however, so research on these parameters is much less settled.

Complicating factors is that EVs are undergoing rapid innovation and often include premium

features to make them attractive to the luxury segment of the market. Accordingly, it is not

1The states with data are: CO, CT, ME, MN, NJ, NY, NC, OR, TX, VT, WA, and WI. The final CB-
SAs surviving data filtering are: Albany-Schenectady-Troy, NY Dallas-Fort Worth-Arlington, TX, Denver-
Aurora-Lakewood, CO, Houston-The Woodlands-Sugar Land, TX, Minneapolis-St. Paul-Bloomington, MN-
WI, Portland-Vancouver-Hillsboro, OR-WA, Rochester, NY, San Antonio-New Braunfels, TX, and Seattle-
Tacoma-Bellevue, WA.

2The unconditional gradient and other conditioning sets give qualitatively similar depictions.

6

atlasevhub.com


trivial to hold quality constant when considering electric versus gasoline vehicles.

Our strategy is to combine information from AAA, Tesla, and Cars.com vehicle listings

data to arrive at a parameter set for both gasoline and electric vehicles that are identical in

all respects except for the vehicle fuel technology. Parameter estimates are shown below in

Table 1.3

Table 1: Automobile Costs

Electric Gasoline Source

Fixed Annual Costs 8,709 7,494

Insurance 1,588 1,588 AAA (2022)

License, Registration, Taxes 675 675 AAA (2022)

Obsolecense 3,882 3,231 Cars.com, Authors’ calculations

Finance cost 2,000 2,000 5% rate × 40k cost

Charger depreciation 300 - 10% per year

Charger finance cost 150 - 5% rate × 3k cost

Per-mile costs 0.147 0.277

Maintenance 0.079 0.106 AAA (2022)

Depreciation 0.022 0.012 Cars.com, Authors’ calculations

Avg fuel cost 0.046 0.159 Idaho National Laboratory (2010)

($3.50 per gallon; $0.14 per kWh)

Notes: Parameters using Cars.com listings data are described in appendix Table 1. Cost of

capital is assumed 5% per year. For more details, consult the appendix.

From this table, we can see the myriad costs that go into the purchase, upkeep, and use

of EVs versus gasoline-powered vehicles. The key takeaway from this table is that EVs have

higher commuting fixed costs but lower marginal costs. Differences in fixed costs include

a higher rate of obsolescence for EVs and charger costs. Maintenance costs for EVs are

lower, but per-mile depreciation is higher. While the fuel economy functions we use in the

model are non-linear functions of speed, in this table we report average fuel costs from a

U.S. government engineering study which show average electric vehicle fuel costs are less

3We focus on Teslas for per-mile costs for two reasons. First, fuel cost curve data are public, and second,
we have no reason to believe the shape of the fuel cost curves for Teslas are not representative of EVs as a
whole. The risk of this approach is that there may be some shifter that affects the entire cost curve that is
unique to Teslas.
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than 1/3 of gasoline-powered vehicles.

Panel (a) in Figure 2 uses the top-line fixed annual costs and linear per-mile costs to

construct annual commuting cost curves. These curves make the implausible assumptions of

all households commuting to the CBD and no traffic congestion, to name the most heroic.

Nevertheless, these figures serve to illustrate qualitatively the gradient of commuting costs

between EVs and gasoline-powered cars. In central locations, gasoline-powered cars are

cheaper because they are driven shorter distances. In suburban locations, EVs are cheaper

because they must drive the entire distance. In later sections, we show this prediction is

maintained in the presence of congestion and non-linear commuting costs.

Figure 1: Electric Vehicle Statistics

(a) Time Series
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(b) Within-City Gradient
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Note: Author’s calculations using data from the Bureau of Transportation

Statistics (panel a) and Atlasevhub.com for ZIP code-level EV registration data

(b). Panel (a) is the light-duty market share for new vehicles. Panel (b) is a

bin-scatter of ZIP-code electric-only vehicle registrations per-capita in 2022,

conditional on various socioeconomic and voting controls.

Resolving these conflicting facts

These two stylized facts present an apparent conflict. Fact 1 shows EV market shares decline

with distance from the CBD. Fact 2 suggests EV market share should rise with distance from

the CBD. Why does the theory not match with the data, and how can this supposed conflict

be resolved?

We believe the answer lies in the newness of EVs as a technology, which drives location-
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varying non-pecuniary costs. Suppose the cost difference between EVs and gasoline-powered

vehicles ∆(k) at distance k from the CBD can be decomposed into a pecuniary commuting

cost differential ∆T (k) and a non-pecuniary location cost ℓ(k) that is additive with respect to

pecuniary costs, and may increase or decrease EV adoption. This location cost is a stand-in

for factors such as suitability of infrastructure, deviation of available EV types from optimal

vehicle types, range limitations, and deviation of available EV quality from optimal vehicle

quality.4 Adding this location cost to the cost differential gives ∆(k) = ∆T (k) + ℓ(k). We

need ∆′ > 0 to replicate Fact 1. We know that ∆T ′ < 0 because EVs have lower marginal

commuting costs, meaning the cost differential widens with k and ℓ′ > 0. This implies total

location costs for EVs start low at the CBD and rise with distance from the CBD such that

ℓ′ > −∆T ′.

We also propose that ℓ(k) is likely to converge to 0 over time. As EVs become a more

mature technology, vehicle variety will increase and charging infrastructure will promulgate.

Local incentives such as free charging and parking are likely to go away. The used-car

market will become thicker, making it affordable for low-income households to purchase

EVs. Increases to battery and charger technology are sure to improve to the point where

range anxiety becomes minimal. Generally, if the mean location cost of EV ownership falls

to zero over time, the EV gradient will rotate and eventually become upward-sloping, a fact

that has been documented in California between 2018 and 2022 by Huang and Kahn (2023).

To illustrate how location costs can help resolve these supposedly conflicting facts, see

Figure 2. This figure shows annual pecuniary commuting costs for EVs and gasoline cars,

denoted as TE and TG, respectively. With no other costs or preferences, the commuting cost

differential resulting from panel (a) would give corner solutions, with 0% EVs until about 16

miles from the CBD, where it would switch to 100%. Panel (b) shows how EV shares vary

by distance to the CBD under a specific form of cost and preference heterogeneity. First, we

include a so-called “range cost” that increases with k. This includes all factors listed above

that may affect all households in a given location. Second, we include household preference

heterogeneity that is drawn from a normal distribution. Combined, these give location costs

for household i at radius k of ℓ(i, k) ∼ N (µ(k), s2), where µ(k) = 85k and s = 800, both

4For instance, (Gillingham et al., 2023) show that EVs up until 2020 were primarily hatchbacks and
sedans, but included virtually no SUVs, minivans, coupes, or convertibles. Additionally, there were no EV
pickup trucks available until 2021.
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calibrated.5 The EV share is calculated as λ(k) = 1− F (TE(k)− TG(k) + ℓ(k))/s), where F

is the cumulative standard normal density function.

At the CBD, despite a cost of EVs that is higher than gasoline-powered vehicles, the

EV share is just above 6% because some households prefer EV ownership. As range costs

increase with k, the market share declines to about 2.5% at 25 miles from the CBD. This

parameterization creates an EV market share curve that matches Figure 1, panel (b).

Figure 2: Numerical Illustration

(a) Direct Commuting Costs
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(b) EV Share with Location Costs
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Note: Author’s calculations based on American Automobile Association and

Cars.com data. Panel (a) is a simple calculation that uses annual fixed costs of

ownership plus two-way annual commuting cost to the CBD under a fixed cost

per mile taken from Idaho National Laboratory (2010). See also, Table 1. Panel

(b) incorporates location-based cost heterogeneity for EVs drawn from

ℓ(i, k) ∼ N (µ(k), s2), where µ(k) = 85k and s = 800. The EV share is calculated

as λ(k) = 1− F (TE(k)− TG(k) + ℓ(k))/s), where F is the cumulative standard

normal density function and TE and TG are pecuniary costs of EVs and gasoline

vehicles, respectively.

This numerical illustration is helpful to reconcile the lower relative EV costs in the suburbs

and the higher EV adoption near the CBD. This simple exercise requires at least three

5In most of the models in this paper, we implement EV cost heterogeneity as an additively separable
location cost that is common to each annulus (a “range cost”), and an idiosyncratic household-specific cost
(i.e. preference). We assume no sorting based on household preferences occurs in the short-run. Then we
explore cases where sorting does or does not occur in the long run. In the simple illustration here, we assume
no sorting.
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major assumptions: linear commuting costs that do not reflect traffic congestion, omission

of important endogenous responses of vehicle choice to optimal location, dwelling type,

housing unit size, and other consumption patterns, and lack of sorting behavior related to

EV preferences. After describing the relevant policy environment, in the following sections,

we use concept of location-based costs introduced here to calibrate a model EV market

shares in urban general equilibrium. The model is calibrated to fit the short-run facts

described above, with long-run representations setting mean range costs to zero. Parameters

in the model are then altered to give effects of EV tax credits on the urban form, energy

consumption, and carbon emissions under different scenarios.

2.2 Policy Environment

EVs and Emissions

In 2021, 28 percent of all energy consumed in the US was used in the transportation sector

(Energy Information Administration, 2022b). Despite using around 30 percent of all energy

consumed in the US, the transportation sector is responsible for a disproportionate share of

CO2 emissions. Reducing emissions from the transportation sector is a way to meaningfully

decrease CO2 emissions in the US; one potential direct solution is increasing the share of the

US’ electric vehicle fleet.

How are electric vehicles supposed to reduce emissions? The focus on electric vehicles as

a means to reduce greenhouse gas emissions rests on the premise that the emissions per mile

for gasoline-powered vehicles is more than that of electric-powered vehicles. This in turn

depends squarely on the input mix producing electricity. It also presumes that EVs have no

interactive effects with other sectors, which as we show in this paper, can be substantial.

In 2021, the average kilowatt hour (kWh) generated in the U.S. produced around 0.883

pounds of CO2 (Energy Information Administration, 2022a). The typical electric car uses

around 0.34 kWh per mile driven, or 1 kWh per 2.9 miles (O’Dell, 2022). Thus, the typical

electric vehicle emits around 0.30 pounds of CO2 per mile driven. In 2019, the U.S. passenger

fleet average for gasoline powered vehicles for CO2 emissions per mile was 0.47 pounds, or

more than 1.5 times as much CO2 per mile as an electric vehicle (Congressional Budget Office,

2022). The average work commute is around 15 miles (US Department of Transportation,

2003), yielding around 4.5 pounds of CO2 emissions for a commute with an electric vehicle

versus 7.05 pounds of CO2 emissions for a commute with a gasoline powered vehicle.

While these statistics are averages, there is both intertemporal and cross-sectional varia-
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tion in electricity generation emissions. Moving forward, shifts in electricity generation from

fossil fuels to renewables will likely cause emissions per mile for electric vehicles to decrease.

Additionally, Borenstein and Bushnell (2022) notes that the social marginal cost of driving

an EV relative to a gasoline powered vehicle varies widely across the country. In some parts

of the country the retail price for residential electricity consumption is higher than the social

marginal cost of electricity generation, disincentivizing EV adoption.

Overall, EVs offer the potential to substantially reduce direct emissions in the trans-

portation sector. Responding to this need, a variety of policies have been enacted at the

federal, state, and local level.

Federal Policies

The United States has implemented various policies to help reduce emissions in the trans-

portation sector. Corporate Average Fuel Economy (CAFE) standards set fleet-wide fuel

economy targets in terms of miles driven per gallon of gasoline consumed, and these stan-

dards have existed since the Clean Air Act of 1970. The first Federal legislation encouraging

the transition of vehicle fuels away from gasoline was the Alternative Motor Fuels Act of

1988. This law introduced manufacturer credits to achieve CAFE standards, making it pos-

sible for a manufacturer to specialize in the development of alternative fuel technologies and

recoup costs by selling CAFE credits, the sort of behavior we would eventually see from

companies like Tesla.6 The Clean Air Act Amendments of 1990 gave the EPA more power

to regulate mobile sources of pollution, such as cars and trucks. This led to the establishment

of tighter standards for emissions from cars and trucks.7 Later, the Energy Policy Act of

1992 established the first Alternative Fuel Vehicle (AFV) program, which included electric

vehicles and directed federal purchases towards an increasing share of vehicles powered us-

ing alternative fuels throughout the 1990s.8 However, because electric and hybrid vehicles

did not exist in large numbers, this legislation had little effect on electric or hybrid-electric

vehicle market penetration.

The Energy Policy Act of 2005 was the first major consumer-focused tax credit, with

Section 1341 directing up to $2,400 towards the purchase of electric or hybrid electric vehicles.

6In 2021, regulatory credits made up over 27% of Tesla’s net income, with $1.5 billion selling various reg-
ulatory credits versus $5.5 billion net income (https://news.bloombergtax.com/financial-accounting/
sec-pushes-tesla-to-reveal-how-regulatory-credits-boost-profits.

7https://www.epa.gov/clean-air-act-overview/1990-clean-air-act-amendment-summary-title-ii.
8https://afdc.energy.gov/laws/key_legislation#:~:text=Energy%20Policy%20Act%20of%

201992,-Back%20to%20Top&text=EPAct%201992%20encourages%20the%20use,to%20acquire%

20alternative%20fuel%20vehicles.
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However, this credit was capped at 60,000 vehicles per manufacturer, a constraint that

hampered the effectiveness of this and similar tax credit policies. This law also saw the

introduction of the Alternative Fuel Vehicle Refueling Property Credit, which provided a 30%

tax credit up to $1,000 for residential installation of alternative fuel equipment, including

charging stations. The Energy Independence and Security Act of 2007 helped encourage

consumer adoption of electric and hybrid-electric vehicles through several provisions. First,

Section 105 of the law required the Department of Transportation to develop a way to

standardize and publicize the fuel economy of vehicles with alternative fuels. Section 131

introduced a grant program to encourage the use of electric vehicles or other technologies.

Finally, the substantial increase in CAFE standards in this law, combined with the expansion

of the CAFE credit program, led to a dramatic increase in incentives for EV development.

The Energy Improvement and Extension Act of 2008 increased the tax credit to $7,500 for
the purchase of a new electric vehicle and increased the per-manufacturer phase-out quantity

to 200,000 vehicles. Between 2008 and 2022, this tax credit has existed in various forms

(with some brief interruptions) at the same amount with the same per-manufacturer caps

(Sherlock, 2019). Other policies, however, focused on investments up and down the supply

chain and on consumer ease-of-use. For instance, the American Recovery and Investment

Act of 2009 included about $10 billion in grants for advanced battery systems and electric

vehicle components manufacturing, incentives for charging stations, and the Infrastructure

Investment and Jobs Act of 2021 greatly scaled up these sorts of incentives, with $15 billion

in direct purchases of EV vehicles by the U.S. government, $7.5 billion in charging stations

and other infrastructure and $5 billion for electric school buses.

The Inflation Reduction Act of 2022 made a substantial commitment to EV technology

adoption in the United States. Eligible purchasers between 2023 and 2032 receive up to

$7,500 for a new EV, and up to $4,000 for a used EV. Beginning in 2024, the EV credit can

be applied at point-of-sale, reducing timing frictions in payments. While the $7,500 credit

has existed since 2008, the Inflation Reduction Act removed the manufacturer cap, meaning

that some cars made by manufacturers who exceeded the 200,000 limit (e.g., General Motors,

Toyota, and Tesla) will now be eligible to claim the credit.

State and Local Policies

State and local policies encouraging EV adoption tend to focus on the consumer. Recog-

nizing the high costs of household infrastructure required to charge electric vehicles, both

credits and other assistance for charging stations are popular, with 37 states having some
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sort of incentive.9 Utility rebates, inspection waivers, high-occupancy-vehicle (HOV) lane

access, free parking, and additional purchase tax credits are also available in some states

and communities.

The most widely coordinated interstate program is the Zero Emission Vehicle (ZEV)

Program, initially implemented by California in 1990. The ZEV program includes require-

ments for automakers to sell a certain percentage of electric vehicles, establishes emissions

credits and trading programs, and encourages the development of electric vehicle charging

infrastructure. Since 1990 the program has been implemented by Colorado, Connecticut,

Delaware, Maine, Maryland, Massachusetts, Minnesota, Nevada, New Jersey, New Mexico,

New York, Oregon, Pennsylvania, Rhode Island, Vermont, Virginia, Washington, and the

District of Columbia. In 2020, California Governor Gavin Newsom’s executive order N-79-

20 mandated 100% of new vehicle sales be zero emissions by 2035. This was codified into

state regulation in a 2022 rule. It has yet to be seen which states may or may not follow

California’s 2022 rule.

3 An urban model with endogenous residential energy

demand and automobile fuel choice

This section introduces a version of the monocentric city model with endogenous house-

hold energy demand and transportation fuel choice. Traditional features of the model are

maintained, following Alonso (1964), Mills (1967), Muth (1969), as synthesized by Brueck-

ner (1987). The city lies on a featureless plane with a central business district (CBD) that

provides exogenous employment. Identical households seek to live as close as possible to

the CBD but are willing to trade off commuting costs for larger homes and more numeraire

good consumption. The solution to the household’s problem gives the house price at each

location in the city. Bid-rent curves are then taken by housing producers to produce optimal

quantities of housing at each location in the city.

The present model extends the “urban energy footprint model” approach of Larson et al.

(2012), Larson and Yezer (2015), Larson and Zhao (2017), Proque et al. (2020), and Larson

and Zhao (2020). These previous papers model household energy demand in a block-recursive

9https://www.kbb.com/car-advice/electric-vehicle-rebates-by-state/. See also (Canis et al.,
2019). For example, in Arizona, Tucson Electric Power customers who buy a Level 2 or DC Fast Charger
can get up to $500 in rebates. Some states offer rebates for multiple chargers in a single household, such
as Alaska’s Chugach Electric Association rebate program which gives $200 bill credits to up to two Level 2
chargers in a single household.
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structure, layering energy consumption parameters onto optimized transportation costs and

housing demand. The present model is the first to treat as endogenous demand for energy

consumed while commuting and in dwellings. We also introduce different vehicle fuel tech-

nologies. While prior models assume all households commute via gasoline-powered vehicles,

the model in this paper allows households to choose endogenously whether to commute via

an electric or gasoline powered vehicle.

Combined, these two extensions to the monocentric city model allow household and hous-

ing producer optimization reflect the full cost of energy and vehicle fuel choice in determining

bid-rent curves, the urban form, and carbon emissions of the city. In later sections, this model

will be used to assess both the short-run and long-run effects of a stylized electric vehicle tax

credit resembling that which was recently signed into law in the Inflation Reduction Act.

3.1 Model

The city lies on a featureless plane under the classic radial assumption such that the city

is circular but can be expressed in terms of distance to the central business district (CBD),

k. Labor demand is exogenously provided by the CBD is such that E identical workers are

needed with wage W per year.

Housing production: Housing H is produced by combining structure S and land inputs

L under a constant returns to scale technology according to a CES production function with

an elasticity of substitution of 1/(1− ρ).

H(k) = A [α1S(k)
ρ + α2L(k)

ρ]1/ρ (1)

Structure inputs are perfectly elastically supplied, but aggregate land input is fixed at each

radius as the fraction of land available for residential development, θ.10

Households: Households are identical, providing ϵ units of labor and and generating utility

by consuming two goods, rental housing h and a numeraire consumption good y under a

CES utility function.

U = [β1y
η + β2h

η]1/η (2)

10This model ignores the role of maintenance, rehabilitation and durability of structures in housing pro-
duction. Land rent is assumed to be earned by absentee landowners, who live outside the city and do not
remit any funds into the city; see also Bertaud and Brueckner (2005).
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β1 and β2 are related to consumption shares between the two arguments, and 1/(1 − η)

represents the constant elasticity of substitution between housing and the numeraire good.

Households maximize utility subject to the budget constraint, below, where y(k) is nu-

meraire good expenditure, r(k)h(k) is housing expenditures, ϵT (k) is household transporta-

tion expenditures, and pee
d(k) is residential energy expenditure. In equilibrium, utility is

equal at all locations, allowing for the solution to be expressed in terms of distance to the

CBD.

ϵW = y(k) + r(k)h(k) + ϵT (k) + pee
d(k) (3)

The number of households living in the city is the integral of the density of households

per unit of land, multiplied by the area of the annulus at radius k, calculated between the

exogenous CBD radius kCBD and the endogenous edge of the city k̄.

N =

∫ k̄

kCBD

2πθkD(k)dk (4)

Transportation costs: Annual commuting costs T (k) for a worker living at distance k

include fixed costs of owning and operating an automobile m0 (e.g. insurance, licensing),

variable costs linearly related to distance traveled m1 (e.g. vehicle depreciation), and two

costs that vary non-linearly with respect to distance traveled, fuel and time costs. The

cost parameters m0, m1, and p, and the fuel economy function G are each indexed by fuel

technology F ∈ {E,G}, indicating an electric or gasoline-powered vehicle, respectively.11

In the short-run, electric vehicles have a location-specific cost drawn from a normal distri-

bution, ℓE(k) = N (z1k, z
2
2). The mean of this distribution varies by k, with z1k interpreted

as a “range cost”. The variance z22 is interpreted as an annulus-based (money-additive)

location-based suitability of EVs, including infrastructure. In the long-run, we assume these

location-specific costs are equal to zero. Gasoline-powered vehicles do not have a location-

specific cost, so ℓG(k) = 0. Fixed costs for electric vehicles, m0E, include an EV subsidy.

Revenue for this credit is outside the model, but may be assumed to be a fixed per-acre tax,

making it completely non-distortionary; other tax and revenue cycling regimes are consid-

ered later. Households residing at location k choose an optimal vehicle fuel technology such

11Residential charging stations are modeled as a fixed cost in m0. However, it is possible there is a charging
cost gradient that follows the land price, due to demands for space for charging. These are subsumed within
ℓ(k).
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that T (k) = min(TE(k), TG(k)).

TF (k) = m0F +m1Fk + ℓF (k) + pF

∫ k

0

1

GF (V (M(κ)))
dκ+ τW

∫ k

0

1

V (M(κ))
dκ (5)

The expressions for fuel and time costs have a number of nested functions and parameters

that deserve discussion. GG(V (k)) represents miles per gallon (mpg) as a function of the

vehicle speed and pG represents the gasoline price per gallon. GF (V (k)) represents miles

per kilowatt hour (kWh) for electric cars and pE represents the electricity price per kilowatt

per hour. These cost factors encompass many of the calculations present in Borenstein

and Bushnell (2022) and Rapson and Muehlegger (2021), who highlight the cost differential

between gasoline and electricity and note that this affects EV uptake.

The introduction of time costs of commuting has presented challenges in the literature,

as it is desirable to avoid full treatment of the labor/leisure optimization for tractability.

Bertaud and Brueckner (2005), Brueckner and Selod (2006), and others assume leisure is

fixed and time spent commuting reduces the effective wage on a one-for-one basis. This

assumption implicitly sets τ = 1 and places it on the left-hand side of the budget constraint

as a subtraction from wages as opposed to an expenditure. We adopt a similar treatment,

except we allow τ < 1, in line with the literature on the time-cost of commuting, which

estimates this parameter to be approximately 0.5 (Small and Verhoef, 2007). This assigns

a leisure benefit to commuting equal to 1 − τ that is additive with respect to numeraire

consumption. For simplicity, we assume this time-cost of commuting does not affect the

number of workers in the city.

Both fuel and time costs are related to the velocity of the automobile at various locations

in the city, which is in turn related to the ratio of traffic volume to roads. Following the

“Bureau of Public Roads” specification that is common in this type of model, velocity is

expressed as V (k) = 1/(a+bM(k)c) whereM(k) =
−→
N (k)/R(k), and a, b, and c are congestion

parameters, and
−→
N (k)/R(k) is the ratio of traffic passing through annulus k to roads. It is

assumed that fraction of land area allocated to roads is exogenous and uniform, therefore

R(k) = R̄ is a constant fraction of land area in each annulus. The traffic volume at radius

k,
−→
N (k), is calculated as the sum of the workers living at or beyond radius k,

−→
N (k) =

ϵ2πθ
∫ k̄

k
kD(κ)dκ, where k̄ is the endogenous edge of the city.

Energy consumption: Energy consumption e(k) is generated in three ways in the model:

direct consumption of electricity, gasoline, and indirect consumption via all other non-direct
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energy costs (e.g. numeraire consumption, housing rents, and vehicle costs). In all cases,

energy consumption calculations include energy loss in production and transmission.

e(k) = ed(k) + ec(k) + en(k) (6)

First, electricity in dwellings, ed(k) is paid for directly out of the budget constraint. A

fraction of energy is lost in the production and transmission, giving a scaling inefficiency

factor Ee. Gross dwelling energy demand is expressed as a function of variables constant

within-city such as energy prices pe, wages, the number of heating (HDD) and cooling degree

days (CDD), and variables endogenously determined at each radius k, including housing

consumption per household and the structure type s(q(k)) which is a function of the floor-

area ratio at k,12

ed(k) = Ee exp(g
′Γ) (7)

where g = [h(k), s(q(k)),W, pe, cdd, hdd].

Second, energy is consumed when commuting ec(k), with expenditure accounted for

within the transportation cost function for technology type V . The fuel-specific inefficiency

factor is EV , which is the same as Ee in the case of electric vehicles.

ec(k) = EV ϵ

∫ k

0

1

GF (V (M(κ)))
dκ (8)

Finally, numeraire energy is calculated as all energy implicitly consumed elsewhere in

the exhaustion of the household budget. This includes consumption of the numeraire good

and also elements of commuting and housing consumption that are not direct energy con-

sumption, net of the full time-cost of commuting. The energy factor EN is the average

energy embodied in $1 of consumption.13 Note that the wage reduction due to time spent

commuting is fully incorporated in the reduction in expenditures by
∫ k

0
1

V (M(κ))
dκ.

en(k) = EN

(
ϵW

(
1−

∫ k

0

1

V (M(κ))
dκ

)
− pV e

c(k)/EV − pee(k)/Ee

)
(9)

12Heating and cooling degree days are calculated as the annual sum of negative and positive daily differences
in average temperature from 65 degrees.

13Different types of energy consumption embody different types of externalities, and these are not consid-
ered. For instance, fossil fuels burned miles away from a city in a power plant may produce less particulate
matter and volatile organic compounds that harm households versus those burned within the city in the form
of gasoline. The model in this paper does not consider these nor other local environment or climate-related
externalities, with the exception of calculations of carbon emissions and a social cost of carbon calculation.
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Carbon dioxide emissions: Carbon dioxide (CO2) gas emissions are calculated based

on energy consumption in the three energy categories, each multiplied by a CO2 emissions

coefficient reported by the U.S. Energy Information Administration. The combustion of

one gallon of gasoline results in 19.6 pounds of CO2, or 156 pounds of CO2 per million

BTUs.14 Electricity is produced using a number of methods in the United States, and

carbon emissions from electricity consumption is therefore averaged over each of the major

sources. In 2014, coal produced 26% of all electricity generated, with an average of about 212

pounds per million BTUs over each of the types of coal consumed. Natural gas produced 32%

of all electricity, at 117 pounds of CO2 emissions per million BTUs. The remaining sources

include nuclear, hydroelectric, biomass, solar, and wind, which together make up 42% of

all energy production, resulting in an average of 7 pounds of CO2 per million BTUs. The

weighted average of the U.S. electricity production basket from these three main categories

is 96 pounds of CO2 per million BTUs. All dwelling and electric vehicle energy is assumed

to be produced using this basket.

3.2 Model Solution

The model is solved numerically as a system of non-linear partial difference equations with

initial values. The initial values are known at the CBD edge, and from this annulus, variables

are solved radiating outwards using spatial recursion. After the model solution has been

calculated, closing conditions are checked to ensure the city is in equilibrium; if out of

equilibrium, initial conditions are altered and the model is re-solved until equilibrium is

achieved. The city is discretized into annuli with a width of d = 0.001 mile, or 5.28 feet.

The model is initialized with a guess of the house price at kCBD. Using the first order

condition in the housing producer’s problem and taking the structure price as given, the

land price is known. This gives the optimal floor-area ratio (FAR) and the structure type

for the annulus. With the house price and commuting costs known at kCBD, the household

chooses an optimal level of housing consumption. Dividing the FAR by the optimal housing

consumption gives land consumption per household, also known as household density.

With the initial values at kCBD known, the rest of the model is solved recursively using

spatial difference equations. These difference equations ensure the spatial isoutility condition

holds: households are just as well off at radius k as they were at radius k − d. The key

14See https://www.epa.gov/greenvehicles/tailpipe-greenhouse-gas-emissions-typical-passenger-vehicle#:

~:text=Every%20gallon%20of%20gasoline%20burned%20creates%20about%208%2C887%20grams%20of%

20CO2.
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solutions are commuting costs at each k and the population living within radius k. These

are each solved using spatial recursion such that values at k are based on values at k − d.[
T (k)

N(k)

]
=

[
T (k − d) + d(m1F + pF

1
GF (V (M(k)))

+ τW 1
V (M(k))

)

N(k − d) + 2πθdD(T (k))

]
(10)

With these known, the rest of the variables in the system can be solved for radius k.

There are two equilibrium conditions that then must be met. First, the labor market

clears such that the edge of the city k̄ is the solution to N(k̄) = E/ϵ. Second, the land price

at the edge of the city must be equal to the agricultural land rent pL(k̄) = paL. If either

of these equilibrium conditions is not met, the simulation is re-initialized with a higher or

lower house price at kCBD and solved again until subsequent iterations achieve an equilibrium

solution.

3.3 Calibration

Parameters

While many parameters in the model are found in the literature (e.g. utility and housing

production parameters), some must be calibrated with respect to real-world cities to achieve

a reasonable model solution. Parameters used are found in Tables 1, 2, and throughout the

text. For details about parameter values, see the Online Appendix. This appendix includes

estimation of transportation cost parameters, residential energy demand parameters, and

description of all others required of the model. The energy demand parameters are updates

to those found in Larson et al. (2012) but the transportation cost parameters are new and

based on cars.com listings data in 2022.
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Table 2: Parameters

Parameter Value Description Source

City Income and size

W 55,000 Annual earnings ACS (2012-2017)

N 875,000 Households ACS (2012-2017)

ϵ 1.14 Workers per household ACS (2012-2017)

Housing production

1/(1− ρ) 0.75 Elasticity of substitution Muth (1975), Altmann and DeSalvo (1981)

α1 1 Numeraire parameter

α2 0.2 Land parameter Davis et al. (2021)

A 0.09 Technology parameter Calibrated

Household Utility

1/(1− η) 0.75 Elasticity of substitution Albouy et al. (2016)

β1 1 Numeraire parameter Numeraire

β2 0.11 Housing parameter Calibrated

Land Use

θ 0.33 Fraction of land used for housing Muth (1975) uses 31.8%

ψ 20 Fraction of land used for roads Muth (1975) uses 19.7%

kCBD 1 Radius of the CBD Assumed

paL 1,336 Reservation agricultural land rent per acre Davis et al. (2021)

Transportation

vlow 5 Minimum commuting speed Calibrated

vhigh 55 Maximum commuting speed Calibrated

c 1.1 Parameter in speed function Calibrated

τ 0.5 Commuting time cost fraction of income Small and Verhoef (2007)

pg 4.0 Auto fuel cost per gallon Assumed

pe 0.09 Electricity cost per kWh Assumed

Calibration target

The standard method of forming a calibration target is to construct a composite city made

up of an average of several similar cities. For the purposes of this model, cities are selected if

the following conditions are met: 1) a 2018 Wharton Land Use Regulatory Index (Gyourko

et al., 2021) less than 0.5, indicating a relatively market-based home construction regime; 2)

a share of unavailable land near the city center of less than 10% according to Saiz (2010); 3)

a share of workers commuting via automobile greater than 90% according to the 2015 5-year

ACS; and 4) a number of households between 800,000 and 1,000,000 in the 2015 5-year ACS.

A total of five cities pass these criteria: Charlotte, NC, Columbus, OH, Indianapolis, IN,

Kansas City, MO, and San Antonio, TX.15

The baseline model has the option of households using EVs with a stylized pre-Inflation

Reduction Act (IRA) subsidy. Prior to the IRA, vehicles were eligible for tax credits until a

15“Cities” are defined as counties in the CBSA identified as “principal cities” by the Census Bureau.
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lifetime manufacturer cap was hit. Our EV market penetration target corresponds to 2019

where most of the large manufacturers (e.g. Nissan and Tesla) had passed their eligibility

limit. The remaining manufacturers’ total market share totaled about 1/3 in 2019, so we

set the baseline credit equal to this fraction. The EV tax credit considered is $7,500. This

value is multiplied by a 5% cost of capital to arrive at a flow-subsidy of $375 per year. The

subsidy in the baseline calibration is 1/3 of this amount, or $125. The actual EV market

share in 2019 was about 1.4% to which we calibrate the market share at the edge of the city.

In all solutions, unless otherwise noted, EV tax credits are paid for in a manner external

to the model. The easiest way to interpret this is as a local land acreage tax, with land

prices inclusive of this tax. This tax does not affect any agents in the model, assuming the

tax is less than the agricultural land rent which is easily maintained.

Calibration fit

Table 3 shows key characteristics of the individual cities, the 5-city composite, and calibrated

model solution. Overall, the model solution is quite close to composite city averages. While

the number of households, workers, income, and city edge land price are all assumed, the

solved interior square feet, land area, and commute times all match the targets well. The

departure in the model from the calibration target is dwelling energy per household, which

is lower than the average reported by the U.S. Energy Information Administration, largely

because housing units in areas subject to steep urban price gradients cities are smaller than

those elsewhere in the country. The modeled city radius and area are also smaller, a well-

known artifact of an urban spatial model with a single income group (Altmann and DeSalvo,

1981).
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Table 3: Baseline Model Calibration

City Charlotte Columbus Indianapolis Kansas City San Antonio Composite Calibrated
CBSA Code 16740 18140 26900 28140 41700 Average Solution

Population 2,364,927 1,972,375 1,950,674 2,055,675 2,286,702 2,126,071 2,126,071
Number of householdsa 973,522 834,170 831,014 880,710 857,732 875,430 875,430
Households/Workers ratioa 1.13 1.14 1.11 1.13 1.20 1.14 1.14
Median Incomea $ 53,246 $ 56,766 $ 54,274 $ 58,212 $ 53,558 $ 55,211 $ 55,211
Interior Square Feeta 1,951 1,623 1,596 1,377 1,691 1,647 1,631
Lot Size (acre, single family)b 0.46 0.34 0.35 0.30 0.31 0.35 0.25
City edge land price (acre, single family)a $ 22,300 $ 29,800 $ 26,100 $ 29,600 $ 25,800 $ 26,720 $ 26,720
Detached housing structurea 73% 64% 71% 71% 73% 70% 72%
Attached housing structurea 5% 7% 6% 6% 2% 5% 5%
2-4 unit housing structurea 4% 10% 6% 6% 5% 6% 5%
5+ unit housing structurea 17% 19% 17% 16% 20% 18% 18%

Area (sq. miles)a 741 511 706 678 597 647 585
Radius (assuming circle) 15.4 12.7 15.0 14.7 13.8 14.3 13.7
Time to worka 26.0 23.4 24.7 23.0 25.5 24.5 23.2
Commuting via Automobilea 91% 91% 92% 92% 91% 91% 100%
Wharton Land Use Regulatory Indexc (0.27) 0.06 0.18 0.13 0.22 0.06 -
Unavailable Landd 5% 2% 1% 6% 3% 4% 0%

Electric vehicle sharef 1.4% 2.8%
Dwelling energy per household (mmBTUs)e - - - - - 75.8 69.8

Sources: a: American Community Survey (2012-2017); b: Davis et al. (2021) c: Gyourko et al. (2021) d: Saiz (2010); e:
Residential Energy Consumption Survey (2015), f: Bureau of Transportation Statistics (2023).
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The calibrated EV adoption gradient is shown in Figure 3. In this figure, each circle

represents EV shares averaged over an 0.2 mile range of 0.001 width annuli. The solid line

is the linear line of best fit (unweighted). EV shares are different at each annulus because of

the location-specific EV cost draw from Equation 5. The EV share gradient in this baseline

calibration matches closely the empirical gradient in Figure 1, with the line of best fit giving

EV shares of about 5% near the CBD, down to about 1.5% at the edge of the city.
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Figure 3: Electric Vehicle Adoption in Baseline (Calibrated) City
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While our calibrated model has a $125 per year tax credit, consistent with the pre-

Inflation Reduction Act level, our so-called “baseline” model to which other parameteriza-

tions are compared has no EV tax credit. Figures 4 and 5 show solutions under different

parametrizations as a function of distance to the CBD. The baseline model reduces the EV

tax credit is the solid blue line, the model solution in the long-run without EV tax credits

is the solid yellow line, and with EV tax credits is the dashed orange line, the latter two

of which will be described shortly. Gradients are monotonic and sloped as predicted by the

textbook monocentric city model: commuting times rise with distance to the CBD, causing
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housing and land prices to decrease with distance. This causes lot sizes to increase near

the edge of the city as density falls. Travel speed increases with distance because there is

more land dedicated to roads and fewer drivers. Dwelling and commuting energy demand

rises with distance to the CBD as home sizes increase and become less efficient structure

types, and commutes lengthen. Numeraire good energy demand falls with distance because

the relative price of the numeraire good relative to housing increases with distance, causing

consumption to decline. Overall, energy demand increases with distance to the CBD.
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Figure 4: Urban Form
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Figure 5: Energy Consumption
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105 Total

Baseline Long Run without Tax Credit Long Run with Tax Credit

Notes: Baseline energy consumption fluctuates with distance to CBD due to EV cost

heterogeneity at different locations (smoothed with a bandwidth of 0.5 miles). Long run

models reduce location costs to 0; hence there is a single discrete jump when households

switch from 100% gasoline vehicles to 100% EVs.

4 Scenario Design and Results

This section uses the calibrated model to perform various counterfactual experiments by

altering model parameters. Cities solved under alternative parameterizations are compared

to the baseline model solution to generate estimated urban equilibrium effects.
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Key parameters of interest are tax credits for EVs, climate parameters indicating dwelling

heating and cooling requirements, the fuel input mix used to generate electricity, and land

use regulations such as height limits and greenbelts. We also consider Pigouvian carbon and

congestion taxes, and income versus land value tax funding of the EV credits. These scenarios

are designed to provide a range of findings concerning the effects of EV tax credits in various

settings. The EV credit is the full amount described in the calibration of a flow-subsidy of

$375 per year.

4.1 Short-run vs long-run effects of EV tax credits

The short-run scenarios are designed to show the effects of EV tax credits holding urban

form constant. This parameterization takes the baseline urban form and uses values for unit

size, FAR, lot size, and density, and treats them as fixed in the scenario with the tax credits.

This scenario gives effects of EVs in partial equilibrium as the change in commuting energy

costs, and considering short-run “goods substitution rebound” effects as cost savings from

EVs are reallocated to other expenditures.

The long-run scenarios alter both model parameters and adjustment mechanisms. Location-

based EV costs from Equation 5 are removed to account for promulgation of EV infrastruc-

ture, battery technology, and more widespread EV variety and availability. This flattens the

EV cost gradient and reverses the slope of the EV adoption gradient to be increasing with

distance to the CBD. In terms of adjustment, long-run scenarios allow producers to respond

to the changes in consumer bid-rent curves. This makes it profitable for producers to change

the location, density, and structure type of housing supplied over time from what would have

been optimal in the baseline model.

Results from the baseline, short-run, and long-run scenarios are found in Table 4. In

the baseline model with no EV tax credit, EV adoption is 2.8%. In the short run, the EV

tax credit increases adoption to 9.5%. Urban price equilibrium dictates that land and house

prices rise to capture the benefits of the tax credits. While energy consumption falls by 0.2%,

carbon emissions fall by 0.4% because gasoline is more carbon-intensive than electricity for

the same number of BTUs, and gasoline usage falls by 5.9%. There is a substantial short-

run rebound effect, however, as the savings from more efficient EVs are redistributed to

purchases of non-energy goods. Consumption of indirect energy rises by 0.1%, or about 250

thousand BTUs per household. This is in comparison to the 1 million BTUs per household

saved using additional EVs. Dividing one by the other gives the goods substitution rebound

effect of about 25%. To summarize, EV tax credits are spent on EVs, but also housing and
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other consumer goods which offset some of the energy and carbon emission benefits.

In the long run, because households with EVs have flatter bid-rent curves than ones with

gasoline-powered vehicles, the adoption of EVs is associated with sprawl. Direct commuting

costs for each fuel type are shown in Figure 6. EV shares rise to 10.3% absent EV subsidies

because range costs are now gone, making EVs the cheaper option at the urban periphery.

The city area expands by about 6%, with commute times rising by 0.7% and average housing

consumption increasing by 0.2%. This sprawl causes commuting energy to fall only by 0.2%

despite an increase in EVs of about 8 percentage points. Housing affordability increases as

lower commuting costs increase accessibility of suburban land.

With EV subsidies, long-run EV ownership jumps from 10.3% to 62.7%. Why the dra-

matic increase where in the short-run the effect of subsidies was relatively modest? The

answer lies in the elimination of the location-based factors. This makes the EV versus gaso-

line decision one of pecuniary costs, and pecuniary costs are very sensitive to changes in

subsidies. As the EV cost gradient shifts down in response to the tax credit, the location

where households are indifferent between the two technologies shifts towards the CBD. Be-

cause the two curves are quite close together (see Figure 6), the $375 flow credit (based on

the $7,500 lump-sum purchase credit) marks a substantial change in the relative price.16 The

equilibrium result is a city that sprawls even more than in the no-credit long-run city, with

city area expanding 17% versus the no-credit short-run baseline. House prices and density

fall by more while time-to-work rises. Energy consumption falls by 2.4% with carbon emis-

sions falling by 4.8%. Overall, EV subsidies have two main effects: the city becomes larger

with lower density, but with substantial energy and carbon emissions savings. However,

offsetting the -47% change in commuting energy consumption is a 0.2% increase in dwelling

energy and 0.5% increase in indirect energy consumption, giving a rebound effect of about

30%.

16This finding also implies a sensitivity of the model to other assumptions and parameters. Accordingly,
we advise a qualitative interpretation of these findings rather than strict quantitative interpretations.
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Table 4: Short-run vs long-run effects of EV tax credits

Scenario [1] [2] [3] [4]

Horizon Short-run Short-run Long-run Long-run

EV Purchase Tax Credit No Yes No Yes

Urban form adaptation No No Yes Yes

Simulation Output

Fraction of Electric Vehicles 2.8% 9.5% 10.3% 62.7%

Urban form Level %∆ %∆ %∆

Unit size (sqft) 1,631 0.0% 0.2% 1.1%

Lot size (acres, single-family) 0.249 -0.1% 4.4% 1.9%

House price per sqft $11.81 0.0% -0.4% -1.5%

Land price per acre $8,711 0.8% -7.5% -19.5%

City area 585 0.0% 5.7% 17.0%

City radius (assuming circle) 13.651 0.0% 2.8% 8.2%

FAR (residential, at CBD) 1.03 0.1% -1.2% -8.7%

Density (hh per sq. mi.) 1503.42 0.0% -5.5% -14.6%

Time to work (minutes) 23.2 0.0% 0.7% 3.6%

Energy consumption per household (million BTUs)

Total 507.31 -0.2% -0.2% -2.4%

Housing Electricity 230.32 0.0% 0.0% 0.2%

Commuting Energy 29.01 -4.4% -3.3% -47.4%

Gasoline 28.81 -6.1% -6.8% -73.9%

Electricity (∆) 0.21 230.7% 481.0% 3656.6%

Indirect Energy 247.97 0.1% 0.0% 0.5%

CO2 emissions per household

Total 25.10 -0.4% -0.4% -4.8%

Housing Electricity 11.00 0.0% 0.0% 0.2%

Commuting Energy 2.26 -5.1% -4.6% -57.6%

Gasoline 2.25 -6.1% -6.8% -73.9%

Electricity 0.01 230.7% 481.0% 3656.6%

Indirect Energy 11.84 0.1% 0.0% 0.5%

Social cost $4,768 -0.4% -0.4% -4.8%

Utility per household 3,003 0.0% 0.1% 0.6%

Notes: This table presents solutions to the model described in Section 3. The EV credit

$7,500 EV credit, giving a flow-subsidy of $375 per year at a 5% cost of capital. The

short-run model takes the urban form of the baseline as given and re-solves optimal prices

and expenditures. The long-run model solved allowing producers to re-optimize structure

provision. Approximate %∆ solution tolerance is +/- 0.1%.
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Figure 6: Annual pecuniary commuting costs for gasoline versus electric vehicles
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Notes: This figure presents total commuting costs for households in the long-run

full-subsidy model solution. The dotted line is for EVs and the solid line is for gasoline

vehicles. The cross-point at 5 miles implies the optimal fuel choice switches from gasoline

to electric. Past this cross-point 5 miles, EVs are cheaper than gasoline-powered cars.

4.2 Effects in different climates

Because dwelling energy consumption is endogenous, and different local climates vary in

their heating and cooling requirements, expected temperatures will have an effect on the

urban form and energy consumption of the city even ignoring EVs. This is one application

of the model that is not the focus of our research, but an novel result nonetheless. When

an EV tax credit is introduced, there are additional interactions with the local climate. For
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simplicity of exposition, all scenarios from this point forward assume long-run solutions, with

other results available upon request.

The local climate in the baseline scenario is the sample median of 1404 cooling degree days

(CDD) and 3824 heating degree days (HDD) per year. This is similar to International Energy

Climate Code (IECC) zone 4A, which stretches from Kansas through the mid-Atlantic. Other

climate zones considered are 3C, which includes coastal California, 1A/2A which includes

the Gulf coast, and 6A/6B which includes Montana, Wyoming, and extends east through

northern Michigan (see appendix Figure 3). These are called “Mixed”, “Maritime”, “Hot”,

and “Cold” climates for the purposes of this section.

Table 5 shows solutions to the model under different climate scenarios.17 In the mixed

climate solution with no tax credit, the city area is 619 square miles and time-to-work is 23.3

minutes.18 When the climate is more moderate such as in the marine climate, the city is

larger at 627 square miles, and when the climate is more extreme, such as the cold climate,

the city is smaller at 612 square miles. This occurs because the marginal cost of interior space

rises with extreme heat and cold, providing an incentive for households to locate in smaller,

denser units. All else equal, the difference between the optimal area of a city in Minnesota

versus California is about 2.4% smaller, entirely due to heating and cooling requirements.19

Energy consumption and carbon emissions also are different, with cold climates consuming

more energy and producing more emissions consuming housing, but less on commuting and

indirect expenditures. Overall, otherwise identical households in cold climates consume 12%

more energy and are responsible for 11% higher emissions before even considering EV tax

credits.

Climate interacts the EV tax credits to alter their effects. Because EVs reduce energy

consumption due to sprawl, and sprawl is greater in moderate climates, EVs reduce energy

consumption and carbon emissions more. We can see from the breakdown of changes to

housing, commuting, and indirect energy that EV credits have the same effects in percentage

terms in each climate. But because the energy mix is more housing-tilted in harsher climates,

the energy consumption reductions are lower. Comparing marine to cold climates, energy

consumption and carbon emissions fall by 2.1% versus 1.9% and 4.4% versus 3.9%.

17Note that we do not consider effectiveness or efficiency of EVs in hot versus cold climates. Engineering
studies suggest extreme temperatures degrade battery performance.

18Other urban form variables behave similarly to these two, so they are omitted from presentation for ease
of exposition.

19It should be noted that the model here does not include urban “heat island” effects of density. See, for
example, Borck (2016).
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Table 5: Long-Run tax credit effects in different climates

Marine Climate Hot Climate Mixed Climate Cold Climate

Climate

IECC zone 3C 1A/2A 4A 6A/7A

Cooling degree days 498 927 1404 7038

Heating degree days 2114 3690 3824 610

No Credit EV Credit No Credit EV Credit No Credit EV Credit No Credit EV Credit

Simulation Output Level Level Level Level Level Level Level Level

Fraction of Electric Vehicles 10.8% 63.1% 10.4% 62.8% 10.3% 62.7% 9.9% 62.5%

Urban form Level %∆ Level %∆ Level %∆ Level %∆

City area 627 10.6% 622 10.7% 619 10.7% 612 11.4%

Time to work 23.4 2.9% 23.4 2.9% 23.3 2.9% 23.3 2.9%

Energy consumption per household (million BTUs)

Total 469.35 -2.1% 493.86 -2.0% 505.34 -2.0% 524.51 -1.9%

Housing Electricity 192.86 0.2% 218.43 0.2% 230.39 0.2% 250.36 0.2%

Commuting Energy 26.77 -43.0% 26.78 -43.0% 26.78 -43.0% 26.80 -43.1%

Indirect Energy 249.73 0.4% 248.66 0.4% 248.17 0.4% 247.35 0.4%

CO2 emissions per household

Total 23.17 -4.4% 24.34 -4.1% 24.89 -4.1% 25.81 -3.9%

Housing Electricity 9.21 0.2% 10.43 0.2% 11.00 0.2% 11.95 0.2%

Commuting Energy 2.03 -53.1% 2.04 -53.1% 2.04 -53.1% 2.04 -53.1%

Indirect Energy 11.92 0.4% 11.87 0.4% 11.85 0.4% 11.81 0.4%

Notes: This table presents solutions to the model described in Section 3. The EV credit is

a $7,500 EV credit, giving a flow-subsidy of $375 per year at a 5% cost of capital. Climate

zones are described in the appendix, but the Marine zone roughly corresponds to coastal

California, Mixed corresponds to roughly Missouri, Cold corresponds to Montana and the

Dakotas, and Hot corresponds to the Gulf south. %∆ is calculated relative to long-run

model with no EV subsidy in the particular climate zone. Approximate %∆ solution

tolerance is +/- 0.1%.

4.3 Emissions under alternative electricity generation inputs

Because energy is consumed from different sources, including electricity and gasoline, it

also makes sense that electricity production input choice matters when considering carbon

emissions. Electricity production input type is not internal to the model, but we can layer

on emissions coefficients from alternative input mixes and trace effects through the model.20

Table 6 shows CO2 emissions under alternative electricity generation input sources. The

20A richer model would treat as endogenous the electricity price and the input mix.
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mixed electricity input mix is used in other sections of the paper, and corresponds to 26%

coal, 32% natural gas, and 42% “green”, which consists of hydro, wind, nuclear, solar, and

biomass. Coal embodies 212 pounds of CO2 per million BTUs, natural gas 117 pounds, and

green an average of 7 pounds. The “clean” energy mix considered is 68% green and 32%

natural gas, and the “dirty” energy mix is 68% coal and 32% natural gas.

The input mix has major effects on carbon emissions generated by households in the

model. The mixed level under no tax credit is about 25 tons of CO2 per year, which includes

11.0 tons from housing electricity, 2.0 tons from commuting, and 11.9 tons indirectly from

non-energy consumption. This is cut in half with a clean electricity mix and nearly doubles

with a dirty energy mix. Because EVs shift the energy mix from gasoline towards electricity,

EV tax credits have effects on emissions that vary depending on the electricity input mix.

When electricity is cleaner, emissions per household fall 10.0% versus 1.5% for the dirty mix.

But in terms of raw emissions reductions, the figures are much closer, at 1.21 tons of CO2

per household under clean energy generation and 0.68 tons per household under dirty energy

generation. Still, EV tax credits are far more effective if electricity generation is cleaner.

Carbon emissions calculations give us the opportunity to conduct a rudimentary cost-

benefit analysis of EV tax credits. From the outset, we wish to be clear that benefits are only

calculated considering reduced CO2 emissions by households, and costs are only calculated

considering the direct cost to taxpayers of the EV credits provided. Other costs and benefits

would be considered in a more real-world holistic approach, including changes to individual

utility, production factors, and other local externalities such as the production of particulate

matter and volatile organic compounds.21

21Prior research has examined Pigouvian carbon taxes in urban systems, including Borck and Brueckner
(2018).
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Table 6: Long-run emissions, alternative electricity production input mixes

Clean Electricity Mixed Electricity Dirty Electricity

No Credit EV Credit No Credit EV Credit No Credit EV Credit

Simulation Output Level %∆ Level %∆ Level %∆

CO2 emissions per household (tons)

Total 12.09 -10.0% 24.89 -4.1% 45.56 -1.5%

Housing Electricity 4.86 0.2% 11.00 0.2% 20.92 0.2%

Commuting Energy 1.99 -62.4% 2.04 -53.1% 2.11 -38.9%

Indirect Energy 5.24 0.4% 11.85 0.4% 22.53 0.4%

Break-even social-cost of carbon $194 $233 $345

Notes: This table presents solutions to the model described in Section 3. The EV credit is

a $7,500 EV credit, giving a flow-subsidy of $375 per year at a 5% cost of capital. Each

experiment shows alternative electricity generation mixes: clean is 68% green, 32% natural

gas; mixed is 26% coal, 32% natural gas, and 42% green; and dirty is 68% coal and 32%

natural gas.

When multiplying the average flow-subsidy of $375 per year by the 62.7% share of drivers

with EVs, we get a cost of EV credits of about $235 per year per household. Dividing this

dollar amount by the change in CO2 emissions gives the break-even social cost of CO2. For

clean electricity, this social cost break-even value is $194, meaning if the social cost of CO2

were $194 per ton, then the EV tax credit would provide emissions reductions exactly equal

to the taxpayer cost of the subsidy. For mixed electricity, the implied break-even social cost

is $233 per year, and for dirty electricity, the value is $345 per year.

These results have two primary implications. The first is that the benefits of EV adoption

in terms of CO2 reductions hinge on the input mix for electricity generation. If paired with

a greening of the energy mix, EVs tax credits become more cost-effective. The second is

that the break-even social cost of carbon is quite moderate and within the range of current

estimates, despite the highly localized nature of the benefits focusing only on CO2 and only on

the household sector. Current U.S. EPA estimates of the social cost of carbon range between

$120 and $340 per ton, depending on the discount rate used (U.S. Environmental Protection

Agency, 2022). This implies EV tax credits in the Inflation Reduction Act are well within

the range of cost-effectiveness except in regions that specialize in coal-fired power plants. On

the other hand, movements towards home-based solar and a greening of the electricity input

mix make EV tax credits increasingly cost-effective.
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4.4 Interactions with land use regulation

The next setting we consider involves a city with land use regulations. Land use regulations

come in many flavors and seek to alter the urban form of the city. Because EVs alter the

urban form in laissez faire, there are likely to be important interactions between EV tax

credits, urban form, and energy consumption in cities with land use regulation.

The model does not contain any restrictions to residential land use a priori, outside of

fixed allocations to residential land use at each radius outside of the CBD, and the model’s

parameters are calibrated using a set of cities with low levels of development interruptions

either through natural features or regulation. To consider the effects of regulation on model

solutions, we make two changes. First, we consider a “greenbelt” which alters the model

closing condition from the reservation agricultural land rent to a fixed maximum city radius

of 12 miles, which we set as the laissez faire baseline value. Then, for the height limit

scenario we set a maximum FAR of 0.5, which corresponds roughly to single-family zoning

throughout the city.

Model solutions are shown in Table 7. A greenbelt increases the effectiveness of the EV

credit in incentivizing EV adoption. This is because the purpose of greenbelts is to limit

commuting distance, and EV adoption is positively linked to commuting distance. This

makes EV adoption rare in a greenbelt city absent tax credits, with the model solution

giving less than 1% market share. However, once EV credits are introduced, the EV share

rises to 57%, which is lower than the laissez faire solution but a larger increase. Overall, the

end results is a larger change in energy consumption of -2.2% and -4.4% carbon emissions

compared to the laissez faire case.

Height limits cause sprawl and so do EVs; the city with both is the largest among the

various settings considered, with a city area post-subsidy of 648 square miles. Overall,

the city has a higher EV market both with and without tax credits of 12.6% and 65.8%,

respectively. The reduction in energy consumption and CO2 emissions is similar to laissez

faire at -2.0% and -4.1%, respectively. Overall, land use regulations that lower density cause

greater adoption of EVs, and EVs are slightly more important for energy and emissions

reductions in such cities.
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Table 7: Interactions with land use regulation

Laissez Faire Greenbelt Height Limit

No Credit EV Credit No Credit EV Credit No Credit EV Credit

Simulation Output Level Level Level Level Level Level

Fraction of Electric Vehicles 10.3% 62.7% 0.4% 57.1% 12.6% 65.8%

Urban form Level %∆ Level %∆ Level %∆

City area 619 10.7% 452 0.0% 648 8.4%

Time to work 23.3 2.9% 22.6 1.2% 24.0 1.9%

Energy consumption per household (million BTUs)

Total 505.34 -2.0% 507.05 -2.2% 505.01 -2.0%

Housing Electricity 230.39 0.2% 230.05 0.1% 230.42 0.2%

Commuting Energy 26.78 -43.0% 28.09 -46.8% 27.40 -44.3%

Indirect Energy 248.17 0.4% 248.91 0.8% 247.18 0.6%

CO2 emissions per household

Total 24.89 -4.1% 25.06 -4.4% 24.88 -4.2%

Housing Electricity 11.00 0.2% 10.99 0.1% 11.00 0.2%

Commuting Energy 2.04 -53.1% 2.19 -55.4% 2.07 -54.5%

Indirect Energy 11.85 0.4% 11.89 0.8% 11.80 0.6%

Notes: This table presents solutions to the model described in Section 3. The EV credit is

a $7,500 EV credit, giving a flow-subsidy of $375 per year at a 5% cost of capital.

4.5 Interactions with tax regimes

The primary goal of EV tax credits is to reduce carbon emissions. However, there are alter-

native taxation regimes which may affect incentives for EV adoption and overall emissions.

Additionally, there are other ways of funding the EV tax credit. This section considers

several additional tax regimes. While there are many more considered, the goal here is to

illustrate how model solutions are sensitive to the fiscal policy millieu in which the EV credit

exists.

The first policy considered an EV tax credit funded through a fee on every driver in

the city that scales based on EV credit usage. This is in contrast current funding which is

external to the model. Another taxation regime which may interact with an EV tax credit

is a carbon tax, a Pigouvian tax levied on consumption based on the harm created by its

associated CO2 emissions. This policy has clear interactions with EV adoption because it

affects marginal transportation cost differential. The final taxation regime considered, which

may intuitively appear to be a second-best carbon tax, is a Pigouvian congestion tax (toll),
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which charges drivers based on the marginal congestion introduced to all other travelers on

the commuting route Borck and Brueckner (2018). While this policy combats inefficient

sprawl, it has no clear interaction with EVs because congestion is introduced equally by

both EVs and gasoline-powered vehicles.

Driver tax

The driver tax is interesting to consider because it assesses a user-fee for every driver to

pay for the total number of EV credits used. In effect, it turns the EV subsidy into a

cross-subsidy between gasoline and electric vehicle owners.

This cross-subsidy creates a prisoner’s dilemma for EV credits: households receive a large

private benefit under the credit but impose a funding cost on the rest of the tax base when

they buy an EV. So, from a direct funding perspective, there are incentives to take the credit

even though in many cases it would be cheaper for the city not to have credits at all. Table

8 shows that under a driver tax, utility falls slightly.

When putting a value on the CO2 avoided through the EV credit, it appears the prisoner’s

dilemma may have a positive outcome. The value of CO2 reductions amount to about $206
per driver at a cost of $234 and a fraction of a percent utility loss. So, while private costs

are small, the social costs roughly offset the loss.

Carbon tax

The optimal carbon tax is simple to calculate using publicly available social cost of carbon.

We use the middle range of the most recent estimate from the U.S. Environmental Protection

Agency of $190 per ton (US EPA, 2022). This gives a carbon tax of $2.232 per gallon of

gasoline, $0.102 per kWh of electricity, and $0.038 per dollar of other consumption. The

carbon tax is cycled back to households in the form of a lump-sum cash grant, regardless of

expenditure basket.

Alone, without the full EV tax credit, a carbon tax results in substantial utility gains

and CO2 reductions for all households. The carbon tax changes relative prices, causing

substitution away from CO2-intensive goods and services, including housing and commuting.

This causes a net increase in numeraire good consumption. Revenue cycling results in an

increase in utility of 7.1%. When EV credits are layered onto the carbon tax, emissions fall

further and utility increases further. In terms of costs and benefits, however, a carbon tax

renders EV tax credits cost ineffective. This is because the carbon tax does a fairly effective
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job at incentivizing EV adoption, with the carbon tax alone nearly achieving a similar level

of EV adoption as with an EV tax credit and no carbon tax (54% vs 63%).

Congestion tax

The congestion tax is implemented as a marginal tax on the cost an additional driver imposes

on other drivers through reduced speeds. This revenue is cycled back to households in the

form of a lump-sum transfer as in the case with the carbon tax. The tax and the revenue

cycling do not affect the marginal cost of EV versus gasoline-powered vehicles, but these

scenarios offer several interesting findings nonetheless.

Alone, the congestion tax actually increases energy consumption by causing households

to consume more and by shifting consumption to housing and indirect energy. Offsetting

some of the benefits of lower commutes is lower EV adoption. On a net basis, the congestion

tax increases CO2 emissions, suggesting that as a greenhouse gas-fighting tool it may not be

a second-best policy, counter to Borck and Brueckner (2018).

When the full EV credit is added to a congestion tax regime, utility increases and CO2

changes are similar to the lassez-faire city: utility rises by about 0.5%, emissions fall by

about 3.9%, and the city area expands by about 11%. Thus, we conclude that effects of EVs

are largely invariant with respect to congestion taxes.
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Table 8: Long-run effects of EV credits under alternative tax regimes

Funding of EV credits External Driving Tax External External

Additional Tax Regime None None Carbon Tax Congestion Tax

EV purchase credit No Yes Yes No Yes No Yes

Simulation Output Level Level Level Level Level Level Level

Fraction of Electric Vehicles 10.3% 62.7% 62.5% 54.0% 89.1% 9.7% 61.7%

Urban form Level %∆ %∆ Level %∆ Level %∆

City area 619 10.7% 10.0% 11.7% 4.5% -1.3% 11.3%

Time to work 23.3 2.9% 2.7% 2.3% 1.9% -0.7% 2.9%

Energy consumption per household (million BTUs)

Total 505.34 -2.0% -2.3% -28.3% -1.5% 4.0% -1.9%

Housing Electricity 230.39 0.2% 0.0% -66.0% 0.2% 0.4% 0.2%

Commuting Energy 26.78 -43.0% -43.0% -37.2% -34.2% -0.5% -42.8%

Indirect Energy 248.17 0.4% -0.1% 7.6% 0.1% 7.8% 0.4%

CO2 emissions per household

Total 24.89 -4.1% -4.4% -29.3% -2.9% 3.9% -3.9%

Housing Electricity 11.00 0.2% 0.0% -66.0% 0.2% 0.4% 0.2%

Commuting Energy 2.04 -53.1% -53.0% -46.0% -47.5% -0.4% -52.8%

Indirect Energy 11.85 0.4% -0.1% 7.6% 0.1% 7.8% 0.4%

Welfare Measures

Utility 3005.32 0.5% -0.1% 7.1% 0.7% -0.22% 0.5%

Per-capita benefit of CO2 reduction (∆) 192 206 96 190

Per-capita cost of CO2 reduction (∆) 235 234 334 231

Notes: This table presents solutions to the model described in Section 3. The EV credit is

a $7,500 EV credit, giving a flow-subsidy of $375 per year at a 5% cost of capital. The

driving tax is a flat per-driver fee that scales with the number of EV credits claimed. The

carbon tax prices carbon at $190 per ton, with carbon weights described in the main text.

The congestion tax is the marginal cost of the reduction in speed imposed on other drivers

from driving. Both carbon and congestion taxes are recycled to households as lump-sum

transfers.
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5 Discussion and Conclusion

The strength of the model in this paper is to highlight the intersection between urban and

energy economics present in automotive transportation policies, including EV tax credits.

The solutions to the model are meant to be illustrative. While the model solutions do

provide precise values, these “simulated” cities do not and will not exist, as they are based

on calibrations of cities that are subject to path dependence, partial adjustment processes,

and young technologies, and are solved based on full long-run adjustment of urban form and

vehicle choices which in reality, would take decades. Despite these shortcomings, this model

offers several key qualitative insights which may be of use to economists and policymakers.

The model in this paper could presumably be extended to include heterogeneous pref-

erences, public transportation, decentralized employment, and endogenous electricity input

sources, to name several possibilities. It may also be possible to extend this framework to the

quantitative urban model of Ahlfeldt et al. (2015), as applied by Delventhal et al. (2022) to

the topic of telework. But in general, modeling energy consumption in an urban equilibrium

framework is surely a useful endeavor for future economics and policy research.
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